7.4 Properties of Special Parallelograms

Date:___

Define Vocabulary:

Rhombus –

Rectangle -

Square -

Rhombuses, Rectangles, and Squares

A **rhombus** is a parallelogram with four congruent sides.

A **rectangle** is a parallelogram with four right angles.

A **square** is a parallelogram with four congruent sides and four right angles.

Corollary 7.2 Rhombus Corollary

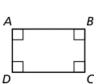
A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.

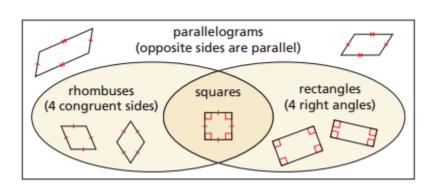
ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.



Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a squar e if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.



Examples: Use Properties of Special Quadrilaterals. $\underline{WE\ DO}$

For any rectangle *ABCD*, decide whether the statement is always or sometimes true. Explain your reasoning.

a.
$$AB = BC$$

$$b. AB = CD$$

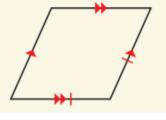
YOU DO

- 1. For any square JKLM, is it always or sometimes true that $\overline{JK} \perp \overline{KL}$? Explain your reasoning.
- 2. For any rectangle EFGH, is it always or sometimes true that $\overline{FG} \cong \overline{GH}$? Explain your reasoning.

Examples: Classifying special quadrilaterals.

WE DO

Classify the special quadrilateral. Explain your reasoning.



YOU DO

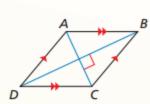
Classify a quadrilateral with four congruent sides and for congruent angles.

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\square ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Proof p. 390; Ex. 72, p. 395

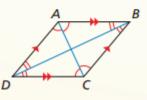


Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Proof Exs. 73 and 74, p. 395

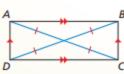


Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

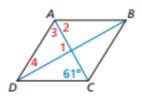
Proof Exs. 87 and 88, p. 396



Examples: Finding angle measures in a rhombus.

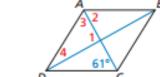
WE DO

Find the $m \angle ABC$ and $m \angle ACB$ in rhombus ABCD.

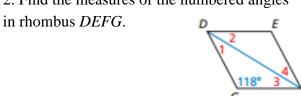


YOU DO

1. Find the $m \angle ADC$ and $m \angle BCD$ in rhombus ABCD.



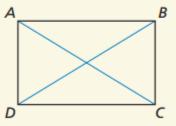
2. Find the measures of the numbered angles



Examples: Finding diagonal lengths in a rectangle.

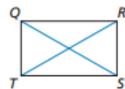
WE DO

In rectangle ABCD, AC = 7x - 15 and BD = 2x + 25. Find the lengths of the diagonals of ABCD.



YOU DO

QS = 4x - 15 and RT = 3x + 8, find the lengths of the diagonals in QRST.



Assignment	
11331811110111	

Define Vocabulary:

Trapezoid –

Bases (of a trapezoid) -

Base angles (of a trapezoid) -

Legs (of a trapezoid) -

Isosceles trapezoid -

Kite -

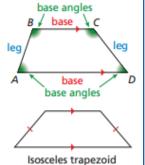
Midsegment of a Trapezoid -

Using Properties of Trapezoids

A **trapezoid** is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the **bases**.

Base angles of a trapezoid are two consecutive angles whose common side is a base. A trapezoid has two pairs of base angles. For example, in trapezoid ABCD, $\angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair. The nonparallel sides are the legs of the trapezoid.

If the legs of a trapezoid are congruent, then the trapezoid is an **isosceles trapezoid**.



Theorem 7.14 Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Proof Ex. 39, p. 405

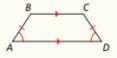


Theorem 7.15 Isosceles Trapezoid Base Angles Converse

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid *ABCD* is isosceles.

Proof Ex. 40, p. 405

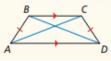


Theorem 7.16 Isosceles Trapezoid Diagonals Theorem

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Proof Ex. 51, p. 406



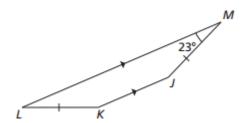
Examples: Using properties of Isosceles Trapezoids.

WE DO

ABCD is an isosceles trapezoid, and $m \angle A = 42^{\circ}$. Find $m \angle B$, $m \angle C$, and $m \angle D$.

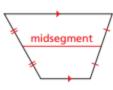
YOU DO

Find the measure of $\angle K$ and $\angle L$.



Using the Trapezoid Midsegment Theorem

Recall that a midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle. The **midsegment of a trapezoid** is the segment that connects the midpoints of its legs. The theorem below is similar to the Triangle Midsegment Theorem (Thm. 6.8).

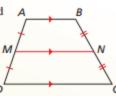


Theorem 7.17 Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid ABCD, then $\overline{MN} \parallel \overline{AB}, \overline{MN} \parallel \overline{DC}$, and $\overline{MN} = \frac{1}{2}(AB + CD)$.

Proof Ex. 49, p. 406



Examples: Using the midsegment of the trapezoid

WE DO

In the diagram, MN is the midsegment of trapezoid PQRS. Find MN.

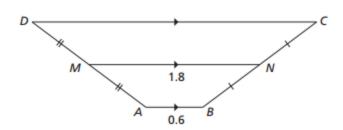
P 13.5 in. Q

M N

S 18.9 in. R

YOU DO

Find the length of CD.

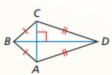


Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral ABCD is a kite, then $\overline{AC} \perp \overline{BD}$.

Proof p. 401

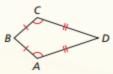


Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

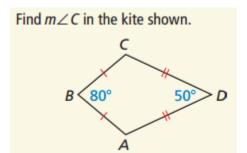
If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\cong \angle D$.

Proof Ex. 47, p. 406



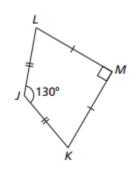
Examples: Finding angle measures in a kite.

WE DO



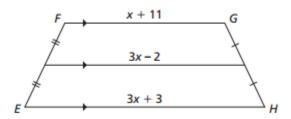
YOU DO

Find the measure of $\angle K$ and $\angle L$.

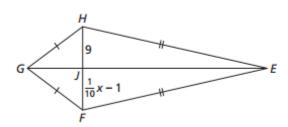


Examples: Use the properties to find the value of x.

WE DO



YOU DO



Assignment